Io9 - Tumblr Posts

Oh, this? Just some teenage girls from Africa who invented a urine-powered generator. (via io9)
Robert T. Gonzales
How's this for an innovative startup: four African girls — the eldest of which is just fifteen years old — have worked together to invent a generator that's powered by urine. The group presented their creation at this year's Maker Faire Africa, and it's so freaking brilliant it makes me want travel back in time and punch 15-year-old me right in the solar plexus.
The Next Web lays out how it works:
Urine is put into an electrolytic cell, which cracks the urea into nitrogen, water, and hydrogen.
The hydrogen goes into a water filter for purification, which then gets pushed into the gas cylinder.
The gas cylinder pushes hydrogen into a cylinder of liquid borax, which is used to remove the moisture from the hydrogen gas.
This purified hydrogen gas is pushed into the generator.
1 Liter of urine gives you 6 hours of electricity.
Here's hoping these girls can get the funding they need to take this idea to new heights. Even if they don't, we've got a feeling they're going places.
Read more over at The Next Web and the Maker Faire Africa website.
Mad Engineering: Engineers light a menorah with a Rube Goldberg Machine, a robotic arm, and a little nitroglycerin (via @io9)
The first night of Hanukkah is less than a week away, and the engineers of Technion, the Israel Institute of Technology, are getting ready with their unnecessarily complicated menorah lighting system, in which a Rube Goldberg device triggers a robotic arm, and nitroglycerin provides the fire.
[via Neatorama]

Pushing Science’s Limits in Sign Language Lexicon (via New York Times)
By Douglas Quenqua
Published: December 3, 2012
Watch this article's interactive feature here.
For a shorter, simpler article on the subject, visit io9's coverage of the news.
Imagine trying to learn biology without ever using the word “organism.” Or studying to become a botanist when the only way of referring to photosynthesis is to spell the word out, letter by painstaking letter.
For deaf students, this game of scientific Password has long been the daily classroom and laboratory experience. Words like “organism” and “photosynthesis” — to say nothing of more obscure and harder-to-spell terms — have no single widely accepted equivalent in sign language. This means that deaf students and their teachers and interpreters must improvise, making it that much harder for the students to excel in science and pursue careers in it.
“Often times, it would involve a lot of finger-spelling and a lot of improvisation,” said Matthew Schwerin, a physicist with the Food and Drug Administration who is deaf, of his years in school. “For the majority of scientific terms,” Mr. Schwerin and his interpreter for the day would “try to find a correct sign for the term, and if nothing was pre-existing, we would come up with a sign that was agreeable with both parties.”
Now thanks to the Internet — particularly the boom in online video — resources for deaf students seeking science-related signs are easier to find and share. Crowdsourcing projects in both American Sign Language and British Sign Language are under way at several universities, enabling people who are deaf to coalesce around signs for commonly used terms.
This year, one of those resources, the Scottish Sensory Centre’s British Sign Language Glossary Project, added 116 new signs for physics and engineering terms, including signs for “light-year,” (hold one hand up and spread the fingers downward for “light,” then bring both hands together in front of your chest and slowly move them apart for “year”), “mass” and “X-ray” (form an X with your index fingers, then, with the index finger on the right hand, point outward).
The signs were developed by a team of researchers at the center, a division of the University of Edinburgh in Scotland that develops learning tools for students with visual and auditory impairments. The researchers spent more than a year soliciting ideas from deaf science workers, circulating lists of potential signs and ultimately gathering for “an intense weekend” of final voting, said Audrey Cameron, science adviser for the project. (Dr. Cameron is also deaf, and like all non-hearing people interviewed for this article, answered questions via e-mail.)
Whether the Scottish Sensory Centre’s signs will take hold among its audience remains to be seen. “Some will be adopted, and some will probably never be accepted,” Dr. Cameron said. “We’ll have to wait and see what happens.”
Ideally, the standardization of signs will make it easier for deaf students to keep pace with their hearing classmates during lectures. “I can only choose to look at one thing at a time,” said Mr. Schwerin of the F.D.A., recalling his science education, “and it often meant choosing between the interpreter, the blackboard/screen/material, or taking notes. It was like, pick one, and lose out on the others.”
The problem doesn’t end at graduation. In fact, it only intensifies as new discoveries add unfamiliar terms to the scientific lexicon. “I’ve had numerous meetings where I couldn’t participate properly because the interpreters were not able to understand the jargon and they did not know any scientific signs,” Dr. Cameron said.
One general complaint about efforts to standardize signs for technical terms is the idea that, much like spoken language, sign language should be allowed to develop organically rather than be dictated from above.
“Signs that are developed naturally — i.e., that are tested and refined in everyday conversation — are more likely to be accepted quickly by the community,” said Derek Braun, director of the molecular genetics laboratory at Gallaudet University in Washington, D.C., which he said was the first biological laboratory designed and administered by deaf scientists.
Since at least the 1970s, deaf scientists have tried to address the lack of uniformity by gathering common signs for scientific terms in printed manuals and on videotapes. The problem has always been getting deaf students and their interpreters to adopt them.
Often, at science conferences, “local interpreters that we never met before would often use different signs for the same terms, leading to confusion,” said Caroline Solomon, a biology professor at Gallaudet University who is deaf.
Gallaudet has tried to take a democratic approach to the problem: it collaborates on the ASL-STEM Forum, a wiki-style Web site dedicated to “enabling American Sign Language to grow in science, technology, engineering and mathematics” that was set up in 2009 by researchers at the University of Washington. Anyone can submit, critique and vote for science signs, which are demonstrated in short videos. The idea is to let those who are hearing-impaired and learning science decide which new signs should become standard.
So far the crowdsourcing approach seems to be effective, at least at Gallaudet. While “many of the signs posted on the ASL-STEM Forum are by Gallaudet students and faculty,” Dr. Solomon said, and therefore are already in use on campus, there have been other signs “posted by non-Gallaudet users that we like better and have started to use ourselves.”
Making sciences more accessible to the deaf is a priority not just to those with hearing problems, but also to science educators in general. As they look to ease a worldwide shortage of STEM teachers, groups like the Institute of Physics, a global scientific society based in London, are financing projects that make it easier for people with disabilities to enter careers in science.
“We not only want to provide support, we want to raise aspirations, to say to people, ‘you can do this,’ ” said Peter Main, director of education and science at the institute, which helped finance the Scottish sign language project.
Surprisingly, some deaf students say that relying on sign language gives them an advantage over hearing students. Because it is acted out, with everything from facial expressions to speed of motion available as tools to convey meaning, and because it is in many ways less codified than written language, sign language can illustrate difficult scientific principles better than traditional languages can.
“There’s often a lot of confusion in early years of physics between mass and weight” for hearing students, because the two concepts are so similar, said Mr. Main, who is not deaf. But because mass has no universally accepted sign, interpreters are free to create hand motions that illustrate its meaning specifically in opposition to weight.
For example: “If I wanted to indicate mass, I would probably hold up a balled fist,” said Kate Lacey, an interpreter at George Washington University who often works with science students. “Then, to indicate weight, I’d drop that fist toward the floor.” The implication is that weight represents gravity’s effect on mass, which is about as clear a definition as one is likely to find.
Such elegant personifications of tricky scientific concepts leave some deaf students feeling sorry for those who rely on their ears. “One of my students was telling me recently that she can’t imagine the difficulty that hearing instructors must have in describing concepts through spoken English, because of the linearity of spoken language,” Dr. Braun said.
By George Dvorsky
Our heartbeats are triggered by a steady stream of electrical signals, which cause our heart muscles to contract with a regular rhythm. For some people, however, the ‘pacemaker cells' responsible for generating these pulses can fail, resulting in an erratic heartbeat. Normally, this problem is addressed by surgery and the insertion of an electric pacemaker device. But as a recent breakthrough at Cedars-Sinai Heart Institute now shows, it may be possible to convert ordinary heart cells into genuine pacemaker cells — and it can be done with a known gene and a modified virus.
There are fewer than 10,000 pacemaker cells in the heart (out of billions of other heart cells) — an astoundingly small number considering how important they are to critical biological function.
Worse, as age and disease takes its toll on the heart, these cells — also referred to as SAN cells (as they are clustered in the sinoatrial node (SAN) of the heart's right upper chamber) — start to degrade, which can result in a cardiac arrest.
Pacemakers certainly provide a viable solution to the problem, but they're clunky, they break easily, they often lead to infections, and they're limited by their finite battery life.
But this new idea appears to offer a much more elegant solution.
Researchers Nidhi Kapoor, Hee Cheol Cho, and their colleagues injected a genetically-modified virus carrying the crucial Tbx18 gene into guinea pigs. This caused ordinary heart cells to transform into the SAN cells; once infected, the heart cells became smaller, thin, and tapered, thus acquiring the exact characteristics of the pacemaker cells.
Tbx18 is the gene that's responsible for pacemaker cell development during the embryonic stage of development. But in this context, the gene directly reprogrammed the pre-existing heart muscle cells (cardiomyocytes) to the SAN cells.
Of the seven guinea pigs treated, five eventually developed heartbeats that were being driven by their new biologically-endowed pacemaker.
Biological pacemakers have been created before, but this is the first time that a single gene was shown to directly convert the heart muscle cells to pacemaker cells. And in fact, the new cells — redubbed iSAN cells (induced SAN cells) — were indistinguishable from native pacemaker cells. Previous attempts resulted in cells that were not true pacemaker cells.
Moreover, by avoiding the use of embryonic stem cells to derive pacemaker cells, the researchers have reduced the risk of cancerous cells emerging.
Once safety and efficacy can be proven in humans, the therapy will likely involve a direct injection of the virus into the patient's heart, or through the creation of pacemaker cells in the lab for eventual transplantation.
Read the entire study online at Nature Biotechnology.
Top image: CLIPAREA l Custom media/shutterstock. Other image: Cedars-Sinai.







Dinosaur Feathers Discovered in Canadian Amber Today a group of paleontologists announced the results of an extensive study of several well-preserved dinosaur feathers encased in amber. Their work, which included samples from many stages in the evolution of feathers, bolstered the findings of other scientists who’ve suggested that dinosaurs (winged and otherwise) had multicolored and transparent feathers of the sort you might see on birds today. The researchers also presented evidence, based on the feathers’ pigmentation and structures, that today’s bird feathers could have evolved from dinosaur feathers. Read More | Photos © Science/AAAS
Sad news from Russia's Foton-M4 satellite. The spacecraft on which a group of geckos spent a few weeks trying to get it on in microgravity returned to Earth, as planned, earlier today. The only problem? The lizards were frozen solid.